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The problem of the steady irrotational motion of a wing under a free sur-
face will be considered in curvilinear coordinates p, v, connected by a
conformal mapping

z=aw(), {=pe? (0.4)

of a circular annulus onto the region bounded by the contour of the wing
and the x-axis. The circles p = const in the [-plane correspond to the
curves p = const in the z-plane; we let the contour of the wing corre-
spond to the unit circle, and the z-axis to the circle p = p,. We also
require that the point at infinity in the z-plane correspond to a point
on the line v = 0 in the {-plane.

1. We assume that the wing moves along the positive z-direction with
velocity ¢. We limit ourselves to the case of small values of the para-
meter A = Zgh/cz, i.e. the case of large Froude numbers [1,2].

Since Laplace's equation in the curvilinear coordinates p, v, has the
same form as in polar coordinates, the velocity potential can be given
in the form of a series

(s 4] o o]
o= EI;T 24 D) (A"t Am P cosmo + Y (Bp™+ B_p ™) sinmy (1)

m=l m==1
Here [ is the circulation around the wing, taken positive in the
positive direction of v

The constants A.Bi may be found from the boundary conditions on the
free surface [1] and on the contour of the wing

7
¢=0 for p=op,, %%:cwﬂmz) for p=1 (1.2)
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The condition of impermeability may be written as [3]

. Qo
%‘% =c %Z_ = (2, cosmo + B, sinmv)  for p =1 (1.3)

m==1
The parameters ai(l), ﬁi(l), are determined from the mapping function
(0.1).

In order to satisfy the condition on the free surface, we replace the
first term in (1.1) by a PFourier series

oo
—1
p=22(__1)"_1_._sinmv (—a<v<m) (1.4;
" m

Substituting (1.1) into the boundary condition (1.2), and comparing
the coefficients of the same trigonometric functions, we find A., A_',
B, B

m’ Tem

For the velocity potential, we get

Il

~|¢

©
P m pa -m
— (1) ————-—-——(P + o) sinmv
"; m(1+9 )

o o, B,
+H Y™ (p"—p™ py™cosmr4 D — T (p™ —ps™™p ™) sinmy (1.5)
;m(1+p22m) 2m(1+p,2"') '

We show that the velocities, corresponding to the ¢hosen potential,
@™

vanish at infinity, i.e. V_ = V;” = 0. We know that the pole of the

x
function w(() determines the point at infinity of the inverse function,
thus

dt, 1 ap ap v o
717—67(—0»=0 F B W= W_O for |z|-— o0

From (1.4) and (1.5), it is clear that for v =0 and 1< p < Py, the
derivatives 3¢/3p and Op/9v are bounded in absolute value. Consequently,

a9 dp dp 89 ov e 99 % | dp ov
W______,_ —— e —1 m__— = ——
Vo= =G Tow o % Vv Ty = oy T av oy — 0 (16

Knowing ¢(p, v), we find the conjugate stream function y(p, v) and
the expression for the complex potential

W@ =0, Db, )= L+ Nt + bt HID (D
’ 1

b, = A, —iB,, b =4, +iB

The constant of integration D is determined from the condition
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$=0 for z=+ o0 or Y(psg, 0)=0

2. To clarify the proposed method of solution, let us consider the
motion of a wing of almost elliptical shape at large depths.

The function, giving the conformal mapping of a circular annulus onto
the given region, has the form
'B B o] (o]
= =_2t 1 ; 3msm i yne—m
=0 =gt 4 T+<<z+z1°)§u t™+(Q w)?n (2.1)
where A, B, Q, P, x are real parameters, to be determined, in which
0 <x<1,

Formula (1,2) is so chosen that Im[m(g)] =y=0 for p = kL
-1

Py = K

Thus

On the contour of the wing Q =g = ei”, the mapping function may be

represented as a Laurent series (lxol <1

©(0) = iB N x™™ 4 4+ %+ (Q + iP) D)™™ 4 (Q — iP) Slwma ™ (2.2)
1 1

1

or
. iB iB ) . %36 .

@) =15 " 7 TAH(Q+iP) 5 +(Q — iP) g (2.3)

To calculate A, B, C and k, we assume that, approximately

iB iB . %
@ mo () =4 — 5 + 75m+(Q— iP) 5 =
R e o] o]

:A+i§+ iB?xmcm +(Q — iP);Iumc_m (2.4)

The justification of this assumption will be carried out later. Iso-
lating in (2.4) the real and imaginary parts, we obtain the approximate
equations for the wing contour in parametric form

+(U)

B
y=n=(B—P)51— QS +5 (2.5

1

oo (o]
A .
8§ = Z *™ cos mv, Sa =2 w™ sin mo
1

We show that (2.5) is the =2quation of an ell}pse in parametric form.
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We first note that

This is easily seen, if we consider the auxiliary function

G
Zo=xo+lyo=1—:—m=sl+lS’ fOl'l’KG|<1 (2.7)

It is known that the geometrical locus of the point (xq, yo) is a
circle, whose equation coincides with (2.6). Solving the system (2.5) for
S1 and s&, and substituting the resulting expressions into (2.6), we ob-
tain the equation of the ellipse

[(xl—A)Q——(yl—B/Z)(B—{—P)_ % ]2+

Q P — B2 —:]
(@1 —A)(B—P)—~m—B/2) Q7 ® \?
+[ : oy 2 ] = (1-——«’) (2.8)

Considering the ellipse to have an angle a with respect to the x-axis,
and its center to have the coordinates (0, —h), we find

2 B w(P—B
A=_1_g—"_x_,, —2—-’1—(1—:—;‘;1+h=o, ..-.,za=—QP— 2.9)

For the equation of the ellipse in camonical form xz/a2 + y2/62 =1,
we have

x? (Q?+ P — B3 B ,
o7 GiPL P Iy o = @10
u? (Q3+ P3— B 240

=% Q1P B2V OBt PB
B, P, Q and x are found from (2.9), (2.10) and (2.11).

The signs of B, P and Q must be so chosen that 0 < x < 1 holds. For
elongated profiles (a/b > 5) and small a(|al < 159)

"
B=__12: (a +b)=—~2h+4%[a+ b— (a— b)cos2a] (2.12)
Y ) —_
P=—.1 zxu (a — b) cos 2a, Q =—-1 2:2 (a — b) sin 2a (2.13)
e —2h + VaRE L 2(a® — b%) cos 2a — (a + b)? (2.14)

- 2(a—b)cos2a — (a4 b)

Here h is the distance of the center of the ellipse from the free sur-
face, a and b are the semi-axes (Fig. 1). In the following table are
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calculated the parameter x for some values of h/2a, a/b and a.

=0 } a==i{h®
hi2 1.0 | 1.5 I 2.0 | 1.0 | 1.5 | 2.0
afh=5 0.153 0.106 | 0.075 0.162 0.108 0.098
afb=10 | 0.138 0.089 0.071 0.138 0.091 0.076
afb=15 | 0.132 0.087 0.069 0.133 0.089 0.073

From (2.14), we see that as h increases, the parameter x decreases.
Substituting A, B, P, Q and x in Expression (2.1), we find the desired
mapping function w({).

In conclusion, we verify the correctness of the assumption (2.4).
From (2.3) and (2.4) we have

s
 (8) = w1 (6) + Aw (c), Aw (6) = (Q +iP) T8 (2.15)
Here z; = ml(a) is the equation of the ellipse in complex form.

We estimate the absolute value of Aw(o); considering (2.13) and (2.185),
we obtain the inequality

x®2 (1 — »?)
1 — 2%8 cos » ~+ %

For h/2a » 1 and 5 < a/b < 15, we have |Aw(o)| < 0.12b according to
the table and (2.14), 1.e. the contour z + 1y = @(0) is close to an
elliptic contour x + iyI = w,(0).

(e b)< (a-"b)

lAm(G)Isz

3. We consider the problem of the motion of an almost elliptic wing
at large depths. Separating in (2.2) the real and imaginary parts, we
find

(o0} o0 o
B .
v(t, v)=?+(BmP)Zx"‘ cosmv + P%‘,u""‘cosmv—-Q}l_‘lum(i—u"")smmv (3.1)

1

From Formula (1.3) we determine the parameters o, 1) ang Ba m
a, 0 = emQu™ (¥¥™ —1), B, = cmx™ (P ~B— Px*m) 3.2

Substituting (3.2) into (1.5), and remembering that Py = K_l. we get

I‘v Ty cQ Z E—(;'Ffi_!)— (®¥Me™ — p™™) cos mv + (3.3).
i 2(* D™ (o™ +P-m}sinmv+c2 K" (P — B —Px™") (2® "™ — o ™sinmy

m (1 4 %*™) 14 %"
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Determining ¢(p, v), we write the complex potential as (1.7).

In a similar manner, we may solve the problem of a wing moving near a
rigid wall.
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